Kompiuterių techninė įranga
5 (100%) 1 vote

Kompiuterių techninė įranga

Turinys

1. PK Centrinis Blokas 3

2. Procesorius 3

3. Vidinė Atmintis 5

4. Disketiniai Kaupikliai 7

5. Prievadai 7

5.1 Nuoseklieji Prievadai 8

5.2 Lygiagretieji prievadai 9

6. Specialiosios vaizdo plokštės 9

6.1 Ploteriai 11

6.2 ATI TV tiuneris 11

7. Garso plokštės, akustinės sistemos 11

8. Informacijos įvedimo priemonės 12

8.1 Klaviatūra 12

8.2 Pieštukas 13

8.3 Pelytė 13

8.4 Sensoriniai ekranai 14

9. Išvedimo sistemos įrenginiai 15

10. Modemai, telefaksai, PK tinklai 181. PK Centrinis Blokas

Centrinis blokas valdo visus PK cirkuliuojančios informacijos srautus. Jį sudaro pagrindinis procesorius, pastovioji atmintis (ROM), operatyvioji atmintis (RAM), spartinančioji atmintis (Cache), ryšio tarp sisteminės magistralės ir atskirų bloko dalių bei išorinių įrenginių interfeisai, taip pat disketinių, diskinių kaupiklių bei displėjaus valdikliai.PP yra PK „smegenys”. Jis, kaip ir ESM pagrindinis procesorius, atlieka aritmetines ir logines operacijas, valdo PK. Nuo PP priklauso ESM galimybės. MP apibudinamas „žodžio” ilgiu, matuojamu bitais, ir darbo dažniu, išreiškiamu megahercais.Pastovioje atmintyje (ROM) yra gamintojo įrašyta PK valdymo programa BIOS, taip pat gali būti ir kitos operatoriaus darbą palengvinančios priemonės, pavyzdžiui, grafinis vartotojo interfeisas ir labiausiai paplitę programiniai paketai. Į operatyviają atmintį (RAM) įrašomos darbo metu vartotojo naudojamos programos, PK cirkuliuojanti informacija ir darbo rezultatai. Spartinančioji atmintis (Cache) naudojama pagreitinti informacijos cirkuliacijai tarp PP ir RAM, taip pat tarp diskinio kaupiklio ir RAM. Informacija tarp atskirų PK dalių yra perduodama per sisteminę magistralę. Ja cirkuliuoja trijų rūšių informacija: duomenys; adresai; PK valdantys signalai. PK dalys su magistale sujungiamos interfeisais, turinčiais prievadus (Ports) – kanalus informacijai priimti ir perduoti. Kiekvienas prievadas turi savo adresą, kuriuo į jį kreipiamasi. Per interfeisus PK palaiko ryšį su išoriniais įrenginiais, pvz., spausdintuvu, modemu, tinklu. IBM tipo PK naudojami lygiagretusis „Centronics” ir nuoseklieji interfeisai RS232 bei RS422. Nuo 1997 m. pradėtas naudoti ypač greitas nuoseklusis interfeisas IEEE 1394 ir universalusis nuoseklusis interfeisas USB (Universal Serial Bus), prie kurio galima prijungti net 127 išorinius įrenginius. Valdikliai valdo jiems priklausnčias PK dalis. Su išore PK bendrauja per imformacijos įvedimo ir išvedimo įrenginius. Operatorius informaciją į kompiuterį įveda klaviatūra, iš disketės, disko, CD-ROM arba skeneriu skaitydamas dokumentus. PK operatorius valdo klaviatūra, sensoriniu ekranu, pelyte arba valdymo rutuliu. PK informacija operatoriui išveda į ekraną arba atspausdina popieriuje. PK su kitais kompiuteriais bendrauja per tinklo adapterį, modamą ar faksmodemą.

2. Procesorius

Praktiškai visą PK elektroninę dalį sudaro mikroschemos, todėl jo PP (pagrindinis procesorius) šnekamojoje kalboje yra vadinamas tiesiog mikroprocesoriumi. Šiuolaikiniame PK yra ne vienas mikroprocesorius, todėl, kad jų nepainiotume, pagrindinį mikroprocesorių ir toliau vadinsime PP. PP yra viena sudėtingiausių PK mikroschemų. Jis vykdo programą ir atlieka visas programoje nurodytas matematines bei logines operacijas. Visuose PP yra trys pagrindiniai įtaisai: Aritmetinis loginis įtaisas(jo angliška santrumpa ALU; jis atlieka aritmetines ir logines operacijas), registrai(kelių baitų talpos atmintys;juose saugomi į PP įvesti duomenys, skaičiavimo rezultatai; yra registrai tam tikroms operacijoms atlikti) ir valdymo įtaisas(suderina visų PP įtaisų darbą; jis valdo programos instrukcijos, paimtos iš PK atminties vykdymą). Visi PP įtaisai tarpusavyje yra sujungti vidinėmis duomenų ir adresų bei valdymo signalų magistralėmis. Duomenų magistrale abiem kryptimis cirkuliuoja duomenys ir adresai, o adresų magistrale- tik adresai iš PP į jo išorę. Valdymo signalai iš valdymo įtaiso siunčiami į visus PP įtaisus, į PP išorę bei priimami iš išorės. PP yra ir daugiau įtaisų: interfeisas sujungia PP su RAM, instrukcijos registras saugo iš RAM paimtą programos instrukciją, dekoderis instrukciją paverčia valdymo blokui suprantamais signalais, valdymo įtaisas valdo instrukcijos vykdymą, ALU, vykdydamas valdymo įtaiso komandas, atlieka veiksmus, registrai saugo ALU darbo tarpinius rezultatus. Nors PK plėtrai ir labai svarbi buvo 80386 procesorių šeima, tas PK, kurį naudojame šiandien, iš esmės prasidėjo nuo 80486 modelio 1989 – aisiais. „Windows 3.x” pakankamai neblogai veikė 80386 DX kompiuteriuose, kiek lėčiau, bet pakenčiamai 80386 SX, tačiau 486 šeimos procesoriai davė daug naujesnių technologijų ir gerokai didesnę darbo spartą. 486 procesoriuje pirmą kartą buvo panaudota pirmojo lygmens spartinančioji atmintis (8 Kb), įgalinusi mažesnį kreipimąsi į DA skaičių ir gerokai spartesnį darbą, nes spartinančioji atmintis buvo įdiegta tiesiog procesoriuje. 486 taip pat buvo pirmasis procesorius turėjęs veržlaus perdavimo (burst) režimą, kuris gerokai padidino bendravimo tarp DA ir procesoriaus spartą. 486 modelis buvo pirmasis x86 šeimos procesorius su instrukcijų konvejeriu ir todėl sparčiau apdorojo instrukcijas. Procesorius turėjo apie 1.25 mln. tranzistorių – beveik 5 kartus daugiau negu 80386. Papildomi
tranzistoriai buvo naudoti naujoms galimybėms diegti, slankaus kablelio operacijų posistemei ir pirmojo lygmens spartinančiajai atminčiai. 486DX buvo gaminamas 25, 33 ir 50 MHz versijų. Kaip ir 80386, 80486 turėjo DX ir SX versijas. Pigesnė SX versija buvo gaminama 16, 20, 25 ir 33 MHz, tačiau, išskyrus mažesnę spartą ir dar vieną svarbią ypatybę, ji praktiškai buvo tokia pat, kaip ir 486 DX. Ta svarbi ypatybė buvo matematinio koprocesoriaus nebuvimas. 1992 rudenį buvo išleista padvigubintų ciklų DX procesorių versija, pavadinta 80486DX2. Vėliau 1994 išleido 80486DX4, kuris veikė triguba DX ciklų sparta. Ir šiose sistemose bendravimas su kitais komponentais vyko magistralės dažniu ( 25 arba 33MHz ), tačiau vidinės procesoriaus operacijos galėjo vykti jau 75 arba 100 MHz. Šie procesoriai naudojo 3.3V įtampą, nes reikėjo sumažinti išskiriamos šilumos kiekį ( 5V DX2 procesoriai privalėjo turėti įrangą šilumai išsklaidyti). DX4 procesoriams dėl šios priežasties reikėjo specialių pagrindinių plokščių. Pentium yra sukurtas panaudojant naujus techninius sprendimus, kurie jį padarė dvigubai greitesnį už tuo pačiu dažniu veikiantį 486. Pentium turi 64, o ne 32 bitų duomenų magistralę; dvi spartinančiąsias atmintis – vieną duomenims, kitą instrukcijoms; įtaisą dviems instrukcijoms tuo pačiu metu apdoroti; daug greitesnį matematinį procesorių ir prognozavimo įtaisą. Platesnė vidinė duomenų magistralė paspartina duomenų perdavimą. PP turintis atskiras spartinančiąsias atmintis instrukcijoms ir duomenims, veikia greičiau, nes jis gali tuo pačiu metu imti ir duomenis, ir naujas instrukcijas. Tai ypač svarbu, nes visų Pentium vidinis dažnis yra didesnis už išorinį dažnį (pvz., 200 MHz Pentium išorinis dažnis 66 MHz). Pentium instrukcijas apdoroja konvejeriniu būdu, panašiai, kaip 486, tik dvi iš karto, todėl per vieną ciklą jis gali apdoroti ne vieną, o dvi instrukcijas. Prognozavimo įtaisas analizuoja instrukcijų seką ir dažniausiai teisingai nusprendžia, kurias instrukcijas apdoroti. Todėl PP greičiau veikia, ypač kai vykdomos pasikartojančios operacijos, nes nereikia laukti, kol iš RAM ateis informacija, kokią operaciją vykdyti. 1997 – aisiais „Intel” rinkai pateikė Pentium su MMX ( multimedia extention ), 57 papildomų instrukcijų rinkinio, skirto pagerinti daugiaterpes procesoriaus galimybes. Naujos instrukcijos remiasi lygiagretaus vykdymo principu ir naudoja technologiją, vadinamą „viena instrukcija, keli duomenys (VIKD)”. VIKD leidžia vienai instrukcijai tuo pat metu naudoti kelis duomenų rinkinius, vadinasi greičiau atlikti užduotis. Tai ne vienintelis Pentium MMX privalumas. Konvejeriai prailgėjo nuo 5 iki 6 etapų, abi pirmojo lygmens spartinančios atmintys buvo padidintos nuo 8 iki 16 Kb, taip pat pagerintas ir šakų spėjimas. Dar prieš metus kai pasirodė Pentium su MMX technologija, buvo pristatytas Pentium Pro procesorius. Pentium Pro konvejerio etapų skaičius buvo padidintas nuo 5 iki 14, pačių konvejerių buvo trys, o ne du, vadinasi, ir darbo sparta gerokai padidėjo. Dar daugiau, net keturi Pentium Pro procesoriai galėjo būti montuojami viename kompiuteryje ir dirbti kartu. Ankstesnės Pentium sistemos tegalėjo turėti du procesorius. Pentium Pro turėjo 5.5 mln. tranzistorių. Pentium II procesoriuje padvigubinta pirmojo lygmens spartinančioji atmintis iki 32 Kb ir vietoj Pentium Pro antro lygmens spartinančiosios atminties panaudojo didesnę 512 KB spartinančią atmintį, kurios magistralė veikia 0.5 Pentium II procesoriaus ciklų dažnio. Pentium III yra patobulintas Pentium II variantas, tačiau mes tikslių duomenų neskelbsime korporacijos saugumo sumetimais. Galime pasakyti tik tiek, kad vidinis dažnis yra didesnis.

3. Vidinė Atmintis

Šiuolaikiniuose personaliniuose kompiuteriuose yra skirtingų paskirčių vidinės atmintys: pastovioji atmintis (ROM), operatyvioji atmintis (RAM), spartinančioji atmintis (CACHE) ir vaizdo atmintis (vRAM). ROM ir RAM sudaro pagrindinę PK atmintį. Atmintys yra suskirstytos ląstelėmis, kuriose laikoma informacija. Kiekviena ląstelė turi savo adresą, kurį sudaro tam tikro ilgio dvejetainis kodas. Adresas nurodo konkrečią atminties ląstelę. Nuo adresų magistralės pločio priklauso jos valdomos atminties talpa. Adresai ir duomenys yra perduodami „žodžiais”. Adresai siunčiami tik viena kryptimi iš PP į atmintį, o duomenys – abiem kryptimis, nes PP iš atminties pasiima jam reikalingus duomenis ir įrašo į ją rezultatus. PP pirmiausia adresų magistrale siunčia adresą, kuris jame nurodytą atminties vietą padaro prieinama duomenims skaityti arba rašyti. Po to siunčiamas signalas, nurodantis, ar duomenys bus skaitomi, ar rašomi, ir duomenys perduodami duomenų magistrale. Atminties talpa ir sandara priklauso nuo PP tipo. Pagrindinė atmintis yra suskirstyta į: įprastinę (Conventional) atmintį (nuo 0 iki 640 Kbaitų; tai visuomet yra RAM), rezervuotąją (Reserved) atmintį (ją sudaro 384 Kbaitai likę iki 1 Mbaito; joje visuomet yra ROM ir RAM, 64 Kbaitų „EMS” langas, pro kurį PP gali kreiptis į papildomą atmintį, ir sistemos BIOS; kai pakanka operatyviosios atminties mikroschemų, PK darbui paspartinti informacija iš ROM yra perrašoma į RAM), papildomąją (EMS – Expanded Memory System) atmintį(ją sudaro daugiau nei 1 Mbaitas; ja speciali atminties
programa papildo PP tiesiogiai valdomą atmintį; su šia atmintim PP bendrauja per „EMS” langą”), viršutinę (HMA – High Memory Area) atmintį (ją sudaro paskutinieji 64 megabaito kilobaitai) ir išplėstąją (Extendet) atmintį(ją sudaro virš 1 Mbaito; ją PP valdo tiesiogiai). Fizinė atminties talpa priklauso nuo to, kokios talpos ir kiek atminties mikroschemų yra kompiuteryje. Nuo RAM talpos priklauso PK darbo greitis. Kai RAM pakanka, programai veikiant, PK retai kreipiasi į diskinį kaupiklį. Kai RAM yra per mažai, PK dažnai tenka kreiptis į diskinį kaupiklį, kuris veikia daug lėčiau. Dėl dažno kreipimosi į diskinį kaupiklį, labai lėtėja PK veikimas, kreipimosi į diskinį kaupiklį trukmė yra apie 6 – 8 kartus ilgesnis lyginant su kreipimosi į RAM. Reikalinga RAM talpa priklauso nuo to, su kokiomis programomis dirbate. Talpesnę RAM galima lanksčiau valdyti. Kreipiantis į atmintį puslapiais arba kitaip tariant „Ping pong” metodu, informacijos skaitymas ar rašymas vyksta žymiai greičiau. Kreipiantis „Ping pong” metodu, vienas paskui kitą einantys adresai nukreipiami skirtingoms RAM mikroschemoms. Taip sutaupome laiko ir visa atmintis veikia greičiau. Todėl atmintį turi sudaryti ne mažiau kaip dvi mikroschemų grupės– moduliai. Pvz.: 8 Mbaitų RAM, sudaryta iš 4 modulių po 2 Mbaitus gali būti greitesnė už RAM, susidedančią iš dviejų modulių po 4 Mbaitus. RAM įrašoma į mikroschemas DIP (Dual In Line Pin), jų rinkinius SIMM (Singl In Line Memory Module), turinčius 72 sudvejintus kontaktus, arba DIMM (Dual In Line Memory Module), turinčius 168 kontaktus. Jie būna 64, 256, 1000, 2000, 4000, 8000, 16000 ir t.t., Kbaitų talpos. SIMM moduliuose kontaktų, esančių abiejose plokštelės pusėse, poros yra sujungtos, o DIMM moduliuose jos nesujungtos, todėl tokio pat ilgio DIMM yra du kartus daugiau kontaktų, o kartu gali būti ir du kartus daugiau RAM mikroschemų. Informacijos perdavimą iš PP į DRAM ir atgal galima pagreitinti naudojant statinę operatyviąją atmintį SRAM (DRAM yra dinamiškai valdomos atminties mikroschemos) vadinama spartinančiąja atmintimi. Ji yra tarp pagrindinės RAM ir PP. Spartinančioji atmintis paspartina PP darbą, nes į ją iš pagrindinės RAM perrašoma dalis informacijos, kuri tuoj bus reikalinga. Tuomet PP beveik visą laiką bendrauja su daug greitesne spartinančia atmintimi ir PK veikia 15 – 20 % greičiau, bei mažiau informacijos cirkuliuoja PK magistrale. Spartinančioji atmintis yra vidinė, kai ji yra μP mikroschemoje, ir išorinė, kai yra šalia μP. Ar DIMM, ar SIMM modulio reikia jūsų kompiuteriui, sužinosite tik panagrinėję pagrindinę kompiuterio plokštę, bei joje esančias atinkamai tik DIMM ar tik SIMM jungtis. SIMM yra trumpesnė lyginant su DIMM jungtimi.

4. Disketiniai Kaupikliai

PK naudojami 5.25 ir 3.5 colių diskeliai. 5.25 colio disketės, esančios lanksčiame plastmasiniame voke, jau seniai nebenaudojamos. Pirmosios tokios disketės buvo pagamintos 1976 metais ir buvo vienpusės. Naujuose PK naudojamos tik 3.5 colio disketės ( SONY, 1981m.), įdėtos į uždarą standų plastmasinį voką. Jos yra kur kas patikimesnės, ilgaamžiškesnės, joms skirtas disketinis kaupiklis yra mažesnis, tačiau jų talpa ir informacijos perdavimo greitis nebetenkina vartotojo. Disketės paviršius yra lygus, padengtas trinčiai atspariu ferolaku. Kaupiklio galvutė juda tiesiai nuo disketės centro jos išorės link ir atvirkščiai. Informacija įrašoma į koncentrinius takelius, kurie yra suskirstyti į sektorius. Takelių ir sektorių skaičius priklauso nuo disketės kokybės, informacijos kodavimo būdo, naudojamo formato ir kaupiklio. Viename sektoriuje dažniausiai telpa 512 baitų duomenų. Pvz., 3.5 colio 1.44 Mbaito disketės kiekvienoje pusėje yra 80 takelių, sudarytų iš 18 sektorių. Sektoriaus takelyje telpa 512 baitų informacijos. Failas į disketę įrašomas fragmentais po 512 baitų į sektorių takelių atkarpas arba jų grupes, vadinamas cluster. Dirbant su diskete, failų fragmentai išsklaidyti po visą disketę. Dažniausiai cluster sudaro du gretimų sektorių fragmentai. Kaupiklio darbą pagreitina diskų optimizavimo programos (pvz., DOS programa „defrag.exe”), kurios išsklaidytus failo fragmentus perkelia vienas greta kito. Nuliniame disketės takelyje yra OS naudoti skirta informacija. Takelio nuliniame sektoriuje yra disketiniam kaupikliui normaliai veikti būtina informacija (Boot Area), kituose sektoriuose – failų išdėstymo disketėje lentelė (FAT – File Allocation Table). Ja naudodamasis kaupiklis randa reikiamą informaciją.

5. Prievadai

PK dalys su magistrale jungiamos interfeisais, turinčiais prievadus (Ports) – kanalus informacijai priimti ir perduoti. Duomenys, kuriais keičiasi kompiuteris ir prie jo prijungtas įtaisas, yra valdomi priskyrus jiems IRQ ir I/O adresus. Esant Išoriniams įtaisams adresai yra priskirti prievadui, prie kurio įtaisas prijungtas. IRQ (Interrupt Request) reiškia tūrio reikalavimą. PK yra 16 tūrių, sužymėtų nuo 0 iki 15 ir kiekvienam nuosekliam ar lygiagrečiam prievadui reikia savo IRQ. (Yra ir išimčių: paprastai COM1 ir COM3, taip pat COM2 ir COM4 prievadai dalijasi tais pačiais IRQ). Kiekvienam prievadui taip pat reikalingas ir nuoseklus įvesties/išvesties (I/O) adresas. Tai tarsi procesoriaus „pašto dėžutė”, į kurią siunčiami dar neapdoroti
Jei daugiau kaip vienas įtaisas sunaudoja tą patį IRQ ar I/O adresą, tai įrenginiai neveiks, arba kompiuteris gali „pakibti”. IRQ ir I/O priskyrimas yra labai svarbus.

5.1 Nuoseklieji Prievadai

Kompiuteriai gaminami su vienu ar dviem įmontuotais nuosekliaisiais Prievadais. Paprastai tai kitoje kompiuterio pusėje kiekvienam jų skirta devynių kojelių jungtys. Kiekvienas nuoseklusis prievadas priskiriamas vienam iš aštuonių galimų COM adresų(COM1, COM2 ir t.t.), kurie turi unikalius I/O adresus ir IRQ.

Nuosekliojo prievado parametrai

COM IRQ I/O adresas

COM1 IRQ4 3F8

COM2 IRQ3 2F8

COM3 IRQ4 3E8

COM4 IRQ31 2E8

COM5 IRQ41 3E0

COM6 IRQ31 2E0

COM7 IRQ41 338

COM8 IRQ31 238

Nuoseklusis prievadas perduoda informaciją po vieną bitą vienu metu, todėl jie lėtesni nei lygiagretusis prievadas. Nuosekliojo prievado sparta priklauso nuo UART lusto, kuris kompiuterio magistralėje lygiagrečiai parduodamus duomenis paverčia į vieno bito srauto, perduodamą prie nuosekliojo prievado prijungtu kabeliu. Beveik kiekvienas šiuolaikinis kompiuteris yra išleidžiamas su 16550 modelio UART kurio duomenų perdavimo sparta 115Kb/s ir to pakanka per nuoseklujį prievadą jungiamą įtaisą. Senesnieji UART 16450 ir 8250 tipai, bei naujesniųjų: galima padidinti spartą įsigyjant nuosekliojo prievado išplėtimo plokštę su 921 Kb/s spartos 16750 UART modeliu.5.2 Lygiagretieji prievadai

Lygiagretieji prievadai daugiausia žinomi kaip jungtys spausdintuvams, tačiau prie jų galima jungti ir kitus įtaisus, pavyzdžiui skenerius. Lygiagretieji prievadai žymimi LPT. Kompiuteris pats susieja su bet kuriuo surastu lygiagrečiuoju prievadu nuo LPT1 iki LPT3.

Standartiniai lygiagrečiųjų prievadų parametrai

LPT

LPT1

LPT2

LPT3 IRQ

IRQ7

IRQ7

IRQ5 I/O

3BC

378

278

Jie yra našesni nei nuoseklieji prievadai, nes vienu metu gali perduoti aštuonis informacijos bitus nuo 40KM iki 1MD per sekundę sparta. Dauguma kompiuterių gaminami su vienu lugiagrečiuoju prievadu, 25 skylučių jungtimi užpakalinėje kompiuterio pusėje. Norint Įdiegti antrą prievadą reikia įsigyti I/O plokštę, kuri dedama į išplėtimo jungtis. Lygiagretieji prievadai būna 4 tipų: vienkrypčiai, dvikrypčiai, EPP ir ECP. Vienkrypčiai prievadai dar yra vadinami SP. Tai patys paprasčiausi ir lėčiausi lygiagretieji prievadai. Duomenys perduodami 40-50 Kb/s sparta tik viena kryptimi- iš kompiuterio į spausdintuvą ar kitą įrenginį. Dvikrypčiai perdavimo sparta 100 – 300 Kb/s. Informacija perduodama abiem kriptymis, kad kompiuteris „žinotų“ įtaiso būklę. EPP yra spartesnis lygiagretusis prievadas sukurtas įrenginiams dirbantiems didele sparta. Tai gali būti išoriniai diskiniai kaupikliai ar tinklo suderintuvai (adapteriai). EPP veikia nuo 400Kb/s iki 1Mb/s sparta. Gali būti EPP 1.7 arba 1.9. ECP yra didesnių galimybių prievadas skirtas tiek greitai perduoti duomenis, tiek palaikyti ryšį tarp kompiuterio ir išorinių įrenginių. Pvz. Išorinių kaupiklių ar tinklo adapterių.

6. Specialiosios vaizdo plokštės

Trimačio vaizdo (3D) spartintuvai (akseleratoria)– tai kompiuterio aparatinės priemonės, pagreitinančios erdvinių objektų atvaizdavimą plokščiajame ekrane. Juose vartojami grafiniai procesoriai prisiima didžiąją dalį darbo, susijusio su 3D koordinačių (plotis/aukštis/gylis) konvertavimu į 2D koordinates (plotis/aukštis), objektų paviršių „užpaišymu” bei kitomis operacijomis. Tokiu būdu ne tik žymiai pagreitėja trimetės grafikos pateikimo greitis, bet ir mažiau apkraunamas kompiuterio procesorius (CPU), kuris tuo metu gali atlikti kitas užduotis. Nei viena kompiuterijos šaka nesivysto taip greitai, kaip yra tobulinami grafiniai akseleratoriai. Jei per pastaruosius dvejus metus mikroprocesorių našumas išaugo 2- 3 kartus, tai grafinių adapterių greitis išaugo dešimteriopai. Bene pagrindinė 3D akseleratorių poreikį sukėlusi priežastis yra nepaprastai išaugęs trimatę aplinką vaizduojančių kompiuterinių žaidimų. Be „rimto” trimačio akseleratoriaus tokie žaidimai praranda didesnę pusę žavesio: vaizdas trukčioja, daiktų kontūrai dantyti, kai kurių vaizdo detalių iš viso nesimato.6.1 Ploteriai

Tai didelio formato spausdintuvai (nuo A4 iki A0). Jie gali būti spalvoti ir nespalvoti. Ploteriai skiriasi taškų skaičiumi colyje. Gali būti 300/600 taškų viename. Kai kurie ploteriai turi operatyviąją atmintį, kuri yra įvairi 8Mb, 20Mb. Yra ploterių kurie turi kietą diską iki 2Gb. Praktiškai jie naudojami įvairaus dydžio plakatams, žemėlapiams spausdinti.

6.2 ATI TV tiuneris

Jis naudingas tiems, kas turi kabelinės televizijos įvadą, nuosavą palydovinės televizijos imtuvą, videokamerą, videomagnetofoną. Tai puikus įrankis prezentacijoms bei kompiuterių reklamai: įspūdingi „multimedia” efektai už prieinamą kainą. Dar viena panaudojimo sritis – video įrašų analizavimas. ATI TV tiuneris gali padidinti bet kurią judančio videovaizdo sritį; atskirus kadrus galima įrašyti į diską, atspausdinti. Turint pakankamai greitą kompiuterį, galima įrašyti judantį vaizdą pakankamai didele raiška ir redaguoti videomedžiagą specialiomis programomis.

7. Garso plokštės, akustinės sistemos

Garso plokštė yra daugiafunkcinis įtaisas, atkuriantis skaitmeninių garso įrašų ir MIDI failus, sumaišantis kelių šaltinių signalus, sintezuojantis
įvairius garso efektus (pavyzdžiui, daugiabalsiškumą, erdvinį garsą), stiprinantis analoginį signalą bei keičiantis jo dažnines savybes, analoginį signalą paverčiantis skaitmeniniu ir atvirkščiai. Garso plokštę taip pat galima naudoti telefono ryšiui per Internetą. Garso plokštė dažniausiai turi stereofoninius įėjimus mikrofonui ir linijai prijungti, taip pat stereofoninius išėjimus garsiakalbiams ir išoriniam stiprintuvui prijungti. Viena pirmųjų garso plokščių kūrėjų buvo firma Creative Labs. Jos sugalvotas garso plokščių pavadinimas „Sound Blaster” labai paplito. Šios firmos plokštės yra vienos iš geriausių tarp multimedijai skirtų garso plokščių. Taip pat paplito firmų Adlib ir Roland plokštės. Dauguma multimedijai skirtos produkcijos yra pritaikyta šių firmų plokštėms, todėl pirkti reikia tik su jomis suderinamą garso plokštę, kuri jas imituoja aparatūriškai arba programiškai. Įvairių firmų plokštės gerokai skiriasi savo funkcinėmis galimybėmis, garso kokybe ir kaina. Su CD-ROM kaupikliu garso plokštė jungiama per specialų interfeisą. Įvairių firmų kaupiklių interfeisai yra nevienodi, todėl gaminamos garso plokštės yra suderinamos su kelių firmų CD-ROM kaupiklių interfeisais. Garsai yra įrašomi į įvairių formatų failus. Sintezuojami garsai dažniausiai įrašomi į firmos Microsoft standartizuotus MIDI formato (*.mid) failus, o iš garso šaltinio (pvz., magnetofono) įrašomi garsai į WAVE formato (*.wav) failus. MIDI failuose yra įrašomas ne garsas, o duomenys apie garso šaltinį, natų reikšmės ir jų ilgiai, garsumas, todėl jie užima palyginti nedaug vietos. WAVE failuose šaltinio garsas įrašomas skaitmenine forma (diskretizuotas ir kvantuotas). Tokios pat trukmės muzikinis Wave failas užima šimtus kartų daugiau vietos negu MIDI failas.

Akustinėmis sistemomis galime vadinti kolonėles, ausines, mikrofonus, sintezatorių ir kt. įrenginius, pro kuriuos įvedamas ar išvedamas garsas. Akustinės sistemos gali būti pasyvinės ir aktyvinės. Pasyvine sistema gali būti kolonėlė, kuri neturi savo stiprintuvų. Garso plokščių išėjimo signalo galia yra maža, jos pakanka ausinėms ir mažiems garsintuvams. Norint stipresnio garso, reikia įsigyti akustinę sistemą su stiprintuvais. Sistemą pasirinkti reikia labai atidžiai, nes būtent ji elektrinį signalą paverčia akustinėmis bangomis – garsu. Stiprintuvas iš garso plokštės paimtą garsą sustiprina ir paduoda į garsiakalbį. Skaitmeniniams įrašams atkurti (pvz., *.wav rinkmenoms) garso plokštėje yra skaitmeninis analoginis keitiklis (skaitmeninį signalą paverčiantis analoginiu) ir stereofoninio garso signalo stiprintuvas. Atkuriamo garso signalo kokybė priklauso nuo įrašo, keitiklio ir stiprintuvo kokybės. Jie turėtų vienodai perduoti signalus, kurių dažnis yra nuo 20 Hz iki 20 kHz, t.y. signalus, į kuriuos reaguoja žmogaus klausa. Tačiau dažniausiai dažnio diapazonas yra nuo 50 Hz iki 15 kHz. Perkant ausines reikėtų atsižvelgti į tuos pačius parametrus kaip ir kolonėlių, tačiau dar reikėtų atkreipti dėmesį ir į ausinių patogumą. Mikrofono parametrai yra jautrumas, kuris matuojamas decibelais ir dažnio juosta. Dažnio juosta parodo, kokius žemiausius ir aukščiausius garsus priima mikrofonas. Mano paminėtos akustinės sistemos su tokiais parametrais tinka tik buičiai. Profesionalams reikėtų normalių mikrofonų su savo stiprintuvu, triukšmo slopinimo sistema ir kt.

Šiuo metu Jūs matote 50% šio straipsnio.
Matomi 3535 žodžiai iš 7027 žodžių.
Siųskite sms numeriu 1337 su tekstu INFO MEDIA (kaina 1,45 €) ir įveskite gautą kodą į laukelį žemiau:
Kodas suteikia galimybę atrakinti iki 100 straispnių svetainėje ir galioja 24 val.