Biologija
5 (100%) 1 vote

Biologija

Biologija

Biologija yra mokslas apie gyvąją gamtą, jоs dėsnius. Graikiškai βίος (bios) reiškia gyvybę ar gyvenimą, o λόγος (logos) – žodį, sąvoką, mokslą. Terminą Biologija pirmą kartą pasiūlė 1802 m. Žanas Baptistas Lamarkas ir G. R. Treviranas (nepriklausomai vienas nuo kito).

Biologijos sritys

Biologija apima platų akademinių sričių spektrą:

Anatomija (gr. anatomē – skrodimas) – biologijos mokslo šaka, tirianti organizmo kūno sandarą. Skirstoma į augalų anatomiją (fitonomija) ir gyvūnų anatomiją (zootomija), kuriai priklauso ir žmogaus anatomija (antropotomija).

Astrobiologija (taip pat egzobiologija, ksenobiologija) yra nežemiškosios gyvybės tyrimai. Tai yra spekuliatyvinis biologijos mokslas, nes dar nėra pavykę rasti įrodymų, kad gyvybė egzistuotų už Žemės ribų.

Sąvoka įvesta amerikiečių biologo Joshua Lederberg XX a. 6-ame dešimtmetyje ruošiantis žmogaus išsilaipinimui Mėnulyje.

Manoma, kad Saulės sistemoje gyvybė gali egzistuoti arba galėjo egzistuoti Marse ir Jupiterio palydove Europoje. Taip pat panašiais tikslais tiriamas ir Titanas.

Biochemija – mokslas, tiriantis gyvuose organizmuose vykstančias chemines reakcijas ir virsmus. Biochemija tiria daugumos pavienių elementų ir jonų vaidmenį fermentinėse reakcijose bei medžiagų transporte, energijos virsmus gyvose sistemose bei chemines reakcijas, kurios yra katalizuojamos fermentų. Tai mokslo sritis, siekianti sujungti ir paaiškinti ryšį tarp chemijos ir biologijos, sukurti teorinį pagrindą biotechnologijoms.

Bioinformatika – taikomosios matematikos, informatikos, statistikos ir kompiuterių mokslo žinių panaudojimas, sprendžiant biologines problemas:

• Evoliucijos modeliavimas (angl. the modeling of evolution).

• Genų paieška (angl. gene finding) yra duotos nukleotidų sekos analizė, nurodant, kurie jos fragmentai tiesiogiai koduoja organizmo sintetinamų baltymų aminorūgštis (kuriami metodai ir transkribuojamoms, bet netransliuojamoms sekoms rasti). Ši užduotis tampa sudėtingesnė tiriant eukariotinį genomą, nes jame į koduojančias sekas (egzonus) įsiterpia baltymų nekoduojančios sekos (intronai). Egzonų sujungimas į koduojančią seką neretai priklauso nuo kintančių faktorių (pvz., kuriame organe tai vyksta), todėl naujausios genų paieškos programos gali pateikti ir keletą galutinės sekos variantų.

• Sekų sugretinimas (angl. sequence alignment) naudojamas palyginti dvi ar daugiau panašių, bet skirtingų nukleotidų ar aminorūgščių sekų. Šiuolaikiai metodai siekia aptikti neatitikimus (sekos elementas skiriasi), insercijas bei delecijas (papildomas arba trūkstamas sekos elementas) bei tarpus (ilgus nesutampančius fragmentus kurie neretai interpretuojami kitaip nei pavieniai nesutampantys elementai). Užduotis tampa sudėtinga jei norima lyginti daugiau negu dvi sekas. Plačiai naudojami tiesinio programavimo metodai.

• Baltymų struktūrinės sekos tyrimai (angl. protein structure alignment) gretina ne aminorūgštis ar nukleotidus, bet stambesnius žinomos funkcijos baltymų „modulius“. Šiais metodais lyginamos sekos, kurios atsiskyrė seniai ir nėra pakankai panašios lyginti sekų sugretinimo metodais.

• Genomų surinkimas (angl. genome assembly) taikomas nustatant bet kurio didesnio genomo nukleotidų seką. Eksperimentiniai metodai nustato riboto ilgio fragmentų seką, tačiau šių fragmentų galai persikloja tarpusavyje, leisdami atkurti daug didesnį genomą. Problemą apsunkina sekos nustatymo klaidos bei pasikartojančios sekos, kurios organizme aptinkamos daug dažniau nei statistiškai būtų galima tikėtis.

• Baltymų struktūros numatymas (angl. protein structure prediction]) siekia nustatyti erdvinę baltymo struktūrą pagal jo aminorūgščių seką. Paprastai tai itin skaičiavimams imlūs metodai, kuriems būtinas paskirstytasis skaičiavimas (distributed computing).

• Taikinio numatymas (angl. ‘target prediction’) siekia numatyti, į kurią ląstelės vietą (ar apskritai iš ląstelės) žinomos sekos baltymas bus transportuojamas. Baltymai gali turėti specializuotas jų transporto kryptį nulemiančias sekas. Šie metodai paprastai kuriami naudojant žinomos transportavimo krypties baltymų duomenų bazę, kurios dalis nuo kuriamos sistemos „paslepiama“ ir vėliau panaudojama kontroliniam įvertinimui.

• Genų ekspresijos numatymo metodai (angl. prediction of gene expression) siekia aptikti geno koduojančią dalį papildančias sekas, nurodančias, kada ir kaip gene esanti informacija turi būti organizmo panaudojama.

• Baltymų sąveikų numatymas (angl. prediction of protein-protein interactions) siekia numatyti, ar du žinomos struktūros baltymai sąveikaus tarpusavyje. Šioje srityje tinkami metodai kol kas dar nėra sukurti.

Šiuo metu Jūs matote 30% šio straipsnio.
Matomi 636 žodžiai iš 2095 žodžių.
Peržiūrėkite iki 100 straipsnių per 24 val. Pasirinkite apmokėjimo būdą:
El. bankininkyste - 1,45 Eur.
Įveskite savo el. paštą (juo išsiųsime atrakinimo kodą) ir spauskite Tęsti.
SMS žinute - 2,90 Eur.
Siųskite sms numeriu 1337 su tekstu INFO MEDIA ir įveskite gautą atrakinimo kodą.
Turite atrakinimo kodą?
Po mokėjimo iškart gausite atrakinimo kodą, kurį įveskite į laukelį žemiau:
Kodas suteikia galimybę atrakinti iki 100 straispnių svetainėje ir galioja 24 val.