Chaos
5 (100%) 1 vote

Chaos

1121



H

A

O

Es gibt kein Gesetz, mit Ausnahme

des einen, da es kein Gesetz gibt.

(John A. Wheeler)

I n h a l t

B e i s p i e l e

z u r

C h a o s f o r s c h u n g

Fraktale Geometrie

Aller Anfang ist Chaos

Alte Völker glaubten, die Kräfte des Chaos und der Ordnung seien ein Teil einer unbehaglichen Spannung. Sie stellten sich etwas Unermeßliches und Kreatives vor. „Tohu wabohu“ – die Erde war wüst und leer, das Chaos vor der göttlichen Schöpfung (Altes Testament, 1. Buch Mose). Kosmologien aller Kulturen stellten sich einen Anfangszustand vor, in dem Chaos oder Nichts vorherrschten, aus dem die Wesen und die Dinge hervorbrachen.

In der babylonischen Schöpfungsgeschichte hieß das Chaos Tiamat, die Urmutter des Alls. Diese Götter verkörperten die verschiedenen Gesichter des Chaos. Zu Beispiel gab es einen Gott, der die grenzenlosen Weiten ursprünglicher Gestaltlosigkeit symbolisierte, und einen Gott, der Verborgenere genannt, der die Unberührbarkeit und Nichtwahrnehmbarkeit darstellte, die im Chaos lauert. Die Lehre, daß das Chaos doch einer gewissen Ordnung unterliegt, wie es in der modernen Wissenschaft dargestellt wird, mußte noch Tausende von Jahren warten.

Die mythische Vorstellung, daß die kosmische Schöpferkraft auf einer wechselseitigen Beziehung zwischen Ordnung und Unordnung beruht überlebte sogar noch die monotheistischen Kosmologien wie die des Christentums. Es ist die Rede vom Kampf der Gottheit gegen die Mächte des Chaos. Die Sintflut, Satan und die Peiniger Jesu Christi wurde als böse Gesandten des Chaos gesehen.

Schon das Wort Unordnung legt nahe, daß Ordnung der Unordnung vorangeht und sie überragt. Die griechischen Philosophen impften dem Chaos eine wissenschaftliche Haltung ein. Thales, Anaximander und Anaxagora schlugen vor, daß eine besondere Substanz oder Energie – wie Wasser oder Luft – in chaotischer Bewegung gewesen sei und daß aus dieser Substanz heraus die verschiedenen Gestalten im Universum herauskristallisiert wären. Aristoteles distanzierte sich noch weiter vom Chaos. Er spekulierte daß die Ordnung alles durchdringt und immer raffinierter und komplexer wird.

Das Mittelalter vermischte die Theorien und stellte sie gegenüber. Zur Zeit Galileis, Keplers, Descartes’ und Newton hatte der wissenschaftliche Geist mit seiner Unterdrückung des Chaos die Oberhand gewonnen. Newtons Gesetze der Himmelsmechanik und Descartes’ Koordinaten erweckten den Anschein, daß alles mathematischen oder mechanischen Grundsätzen unterliegt.

Man konnte sich vorstellen, daß eines Tages eine einzige mathematische Gleichung reicht, um alles zu erklären.

Das 19. Jahrhundert aber stellte diesen Zauber auf eine harte Probe. Zum Beispiel hatten schon um die Mitte des 18. Jahrhunderts Forscher begonnen, sich darüber den Kopf zu zerbrechen, warum es ihnen nicht gelang, eine sich für immer bewegende Maschine, ein Perpetuum mobile, zu erfinden. Dummerweise stellte sich beim Betreiben jeder Maschine heraus, daß ein Teil der eingespeisten Energie in eine Form überging, die man nicht zurückgewinnen und wiederbenutzen konnte. Die Energie war desorganisiert, chaotisch geworden. Dies führte zum Entropiegesetz und zur Begründung der Wärmelehre oder Thermodynamik. Bedeutet die Tatsache, daß jede Maschine ständig neue Energie braucht und daß alle Gestalten unausweichlich unter der Lawine der Entropievermehreung zermalmt werden und zerfallen, bedeutet dies, daß das Chaos im Prinzip ebenso mächtig ist wie die Ordnung?.

In den siebziger Jahren des 19. Jahrhunderts versuchte der Wiener Physiker Ludwig Boltzmann der Herausforderung zu begegnen, indem er bewies, daß Newtons Mechanik trotz allem auf dem reduktionistischen Niveau (Reduktion: das Zurückführen; Reduktion eines komplizierten Sachverhalts oder Begriffes auf einen einfachen) der Atome und Moleküle gültig ist. Nur wird es in komplizierten Systemen, wo Trillionen von Atomen und Molekülen herumtorkeln und einander stoßen, immer weniger wahrscheinlich, daß diese geordnete Beziehungen zueinander aufrechterhalten. Boltzmann führte die Wahrscheinlichkeit in die Physik ein.

Charles Darwin und Alfred Russel Wallace stellten eine Theorie auf, die erklärte wie neue Lebensformen erscheinen. Der Zufall führte dabei nicht zum Durcheinander und Zerstörung komplexer Ordnung, sondern erzeugt hier Zufallsvariationen und Individuen wie es eben nur das Leben schafft. Die Menschheit sah sich nun als Ergebnis unwahrscheinlicher Zusammenstöße.

Als die Ingenieure des 19. Jahrhunderts ihre neuen Brücken, Dampfschiffe und anderen technischen Wunderwerke errichteten, so begegnete ihnen immer wieder Unordnung in Form plötzlicher Veränderungen, die so ganz anders waren als das langsame Wachstum der Entropie. Platten wölbten sich unerwartet auf, und Baustoffe brachen. Solche Erscheinungen forderten die Mathematik heraus. Der Wissenschaft erschien ein Phänomen gesetzmäßig, wenn die Bewegungen sich im Sinne eines Schemas von Ursache und Wirkung durch eine Differentialgleichung darstellen ließen. Newton führte die Idee des Differentials erstmals in seinen berühmten Bewegungsgleichungen ein, die zeitliche Veränderungen mit Kräften in Beziehung setzten. Von nun an verließen sich die Wissenschaftler auf lineare Differentialgleichungen. Kleine Wirkungen rufen kleine – große
Veränderungen große Wirkungen hervor. Große Wirkungen kommen zustande, indem sich kleine Veränderungen aufsummierten. Das sollte allerdings nicht der Weisheit letzter Schluß sein.

Es gibt nämlich auch noch nichtlineare Gleichungen. Sie kommen in der Beschreibung unstetiger Vorgänge vor – wie etwa Explosionen, plötzlichen Materialbrüchen oder hohen Windgeschwindigkeiten. Mathematiker konnten nur die allereinfachsten nichtlinearen Gleichungen in Spezialfällen lösen, und allgemeines nichtlineares Verhalten blieb ein Geheimnis. Um die mechanischen Meisterleistungen jedoch zu vollbringen, war es notwendig auf „lineare Näherungen“ zurückzugreifen. Diese sind eine besondere Art der Differentialgleichung. Sie stützen sich auf vertraute Intuitionen und den zuverlässigen reduktionistischen Zusammenhang zwischen Ursache und Wirkung. Noch einmal hatten die Wissenschaftler den alten reduktionistischen Zauber wirksam erhalten.

Dieser Zauber hielt bis in die siebziger Jahre an, als mathematische Fortschritte und das Aufkommen immer schnellerer Computer die Wissenschaftler in die Lage versetzten, komplexe und nichtlineare Gleichungen zu untersuchen. Diese seltsame Art der Mathematik trieb die turbulente Wissenschaft an.

Beispiele zur Chaosforschung

Schmetterlingseffekt:

Der Meteorologe Edward N. Lorenz entdeckte im Jahr 1963 den Schmetterlingseffekt bei dem Versuch, per Computer die Wettervorhersage zu präzisieren. Als er mit dem Computer eine Berechnung wiederholte, stellte er fest, daß sich die neue Zahlenreihe – der Wetterverlauf – stark von der vorherigen unterschied. Zunächst dachte er an einen Computerfehler, doch bei genauerer Betrachtung entdeckte er die tatsächliche Ursache: Lorenz hatte den Computer ursprünglich mit sechs Dezimalstellen gefüttert – 0,506127 -, die zweite Berechnung aber nur mit 0,506 als Ausgangszahl durchgeführt, da er die verbleibende Abweichung in dem verschwindend geringen Verhältnis von eins zu 1000 für unbedeutend hielt. Doch genau diese scheinbar zu vernachlässigende Differenz – im übertragenen Sinn vergleichbar mit dem durch den Flügelschlag eines Schmetterlings ausgelösten Windhauch – führt zu einer extremen Wirkung.

Das Phänomen ist weltweit als Schmetterlingseffekt bekannt. Diese starke Abhängigkeit dynamischer Systeme von den Anfangsbedingungen erklärt, warum der wissenschaftliche Glaube an die Wettervorhersage ein Wunschdenken sein muß: Entgegen den logischen Voraussetzungen der klassischen Mechanik, wonach kleine Ursachen nur kleine Wirkungen haben, können in komplexen, nichtlinearen Systemen nämlich gerade kleinste Ursachen allergrößte Wirkung nach sich ziehen.

Die große Woge:

In seinem Farbholzschnitt „Die große Woge“ hat der japanische Maler des 18. Jahrhunderts, Katsushika Hokusai, all die Aspekte der fraktalen Welt, in die wir eintreten werden, aufs herrlichste eingefangen. Diese unnatürliche Welle wird als „Soliton“ oder solitäre Welle bezeichnet. Ein Ingenieur und Schiffsbauer namens Russel machte eines Tages im Jahre 1834 eine Entdeckung die ihn sein lebenlang nicht mehr losließ. Durch Zufall ergab es sich, daß ein normales Schifferboot eine Riesenwelle auslöste. Russel verfolgte die Welle bis er sie aus den Augen verlor. Sie sollte zum Ausgangspunkt seiner revolutionären Entwürfe von Schiffsrümpfen werden.

Die Physiker haben eine Technik entwickelt, die es ihnen erlaubt, sich eine beliebig komplizierte Wellenform als Kombination von lauter Sinuswellen vorzustellen. Die Sinuswelle ist die einfachste Form, die eine Welle annehmen kann. Jede Sinuswelle ist durch ihre Frequenz charakterisiert. Fügt man mehrere einfache Sinuswellen zusammen, so erzeugen sie eine komplexere Gestalt. Der Wasserhügel, der eine Welle auf der Oberfläche eines Kanals ausmacht, läßt sich als Zusammensetzung einer Menge von Sinuswellen beschreiben, die alle verschiedene Frequenzen haben. In Wasser pflanzen sich aber Wellen verschiedener Frequenz mit verschiedenen Geschwindigkeiten fort. Weil es nichts gibt, was diese verschiedenen Frequenzen zusammenhalten könnte, verändert der Hügel dieser komplexen Welle seine Form; der Gipfel beginnt sich aufzusteilen und die Hauptmasse zu überholen. Die Auflösung von Wellen in viele kleinere Störungen und schließlich das Brechen im Chaos nennt man Dispersion.

Šiuo metu Jūs matote 52% šio straipsnio.
Matomi 1402 žodžiai iš 2704 žodžių.
Siųskite sms numeriu 1337 su tekstu INFO MEDIA (kaina 0,87 €) ir įveskite gautą kodą į laukelį žemiau:
Kodas suteikia galimybę atrakinti iki 100 straispnių svetainėje ir galioja 24 val.