Chromosomine informacija
5 (100%) 1 vote

Chromosomine informacija



Chromosomų duomenys gali būti apžvelgti dviem būdais, naudojamais klasifikacijos tikslams. Pirma, tai yra griežtai anatominė informacija – chromosomų skaičius tiek pat svarbus, kiek ir vaislapėlių skaičius. Antra, jos sudaro ypatingą informacijos tipą, nes nuo chromosomų skaičiaus ir homologinių chromosomų elgesio mejozėje dalinai priklausys hibridų vaisingumo lygis, tuo pačiu kryžminimosi bei populiacijų kintamumo tipai. Antrasis būdas svarbesnis biosistematikai (filogenetiniams tyrimams), nei taksonominiams(fenetiniams)tyrimams. Šiuos duomenis nagrinėja CITOTAKSONOMIJA, kur taksonomistui svarbiausi trys objektai: chromosomų skaičius, jų morfologija ir elgesys.

1. CHROMOSOMŲ SKAIČIUS

Kiekvienos rūšies visų individų kiekvienoje ląstelėje chromosomų skaičius yra pastovus. Chromosomų skaičiaus svarbą rodo ir gausūs literatūros duomenys. Informacija apie chromosomų skaičių pateikiama, remiantis mitoze sporofitiniame audinyje – pateikiamas diploidinis chromosomų skaičius 2n, kur n haploidinis chromosomų skaičius, susidarantis bręstant lytinėms ląstelėms mejozės metu. Paprastai informacija užrašoma diploido 2n skaičiaus forma. Santykinis chromosomų skaičiaus konservatyvumas – svarbus ir dažnai naudojamas taksonominis požymis. Tai vienintelis biosistematinis įrodymas, žymimas standartinėse Florose. Somatiniuose audiniuose – haploidiniuose ar diploidiniuose – atliekami chromosomų apskaičiavimai, greitai ir sinchroniškai dalijantis ląstelėms (meristemai, gemalams, jaunam sporogeniniam audiniui).

Taksonominis chromosomų skaičiaus svarbumas matomas pagal didelį sąvadų skaičių. Nuo 1967 metų periodiškai leidžiamas ypatingai kruopštus visų dviskilčių chromosomų skaičiaus sąrašas – “INDEX TO PLANT CHROMOSOME NUMBER”. Jis apima visus žalius augalus ir grybus. Šiuo metu jau išleisti darbai apie samanų, sporinių induočių ir dumblių cromosomų skaičių. Šie skaičiavimai tinkami 8% samanų, 20% pteridofitų ir 15 – 20% gaubtasėklių rūšių, be to daugelis skaičiavimų nėra absoliučiai patikimi. Turtingose rūšimis florose, ypač tropikų, šie procentai dar mažesni. Vis dar išlieka didžiulis poreikis atlikti daugiau chromosomų skaičiavimų. Svarbiausia, kad augalų rūšys, panaudotos citologiniam tyrimui, būtų saugomos herbariumuose. Ateityje galėtų būti patikrintas jų identiškumas ir charakteristika.

Studijuojant minėtus sąrašus, stebima, kad giminingos vienos genties rūšys dažnai skiriasi chromosomų skaičiumi. Dažniausiai kintamumas pagrįstas POLIPLOIDIJOS (chromosomų rinkinių padaugėjimu du ir daugiau kartų) reiškiniu. Gentis Festuca apima rūšis, kur 2n = 14, 28, 42, 56 ir 70. Tokios rūšys vadinamos DIPLOIDAIS, TETRAPLOIDAIS, HEKSAPLOIDAIS, OKTOPLOIDAIS IR DEKAPLOIDAIS. Šie skaičiai paremti skaičiumi 7, diploidinės rūšies gametofito chromosomų skaičiumi. Tai BAZINIS SKAIČIUS arba BAZINIS CHROMOSOMŲ SKAIČIUS x, išreiškiantis tam tikrą rūšies haploidinį chromosomų skaičių. Diploidinių rūšių x = n, bet poliploidinių rūšių n yra x kartotinis, kaip anksčiau minėtas Festuca atvejis, kur 2n = 6x = 42. Poliploidija ypač paplitusi augaluose. Nuo 20% iki 50% gaubtasėklių augalų rūšių yra poliploidinės. Gyvūnų pasaulyje poliploidija – labai retas reiškinys. Pteridofitų poliploidija dažna, bet samanoms ji retesnė – 15% kerpsamanių poliploidinės.

Kartais bazinis skaičius gali būti tik spėjamas. Pandanus genties 2n = 60, todėl bazinis skaičius gali būti 5, 6, 10, 15, ir 30. Faktas, kad kitas Pandanaceae šeimos atstovas turi 2n = 30, siūlo, kad bazinis Pandanus skaičius yra 5 arba 15, bet ne 6, 10, ar 30. Manoma, kad sporofitų chromosomų skaičius net atstovauja chromosomų rinkinio skaičių. Tokios problemos dažnai sunkiai įveikiamos, nes protėvinės diploidinės (2n) rūšys dabar išnykusios.

Organizmų grupės, turinčios didelę chromosomų skaičiaus įvairovę, atstovauja skirtingus poliploidijos laipsnius – PLOIDIŠKUMUS (PLOIDIJOS LYGIUS). Tokios grupės vadinamos POLIPLOIDINĖMIS EILĖMIS, pavyzdžiui, anksčiau minėtos Festuca rūšys. Kai vidiniai ryšiai tarp skirtingų ploidijos lygių ir tarp skirtingų taksonų kiekviename ploidijos lygyje yra sudėtingi, grupės dažniau laikomos POLIPLOIDIJOS KOMPLEKSU. Britų floroje juos atstovauja Cardamine pratensis kompleksas ir Valeriana officinale kompleksas. Abejuose kompleksuose rūšies apimtis ypač problematiška, nes poliploidinės eilės neturi aiškių morfologinių požymių rinkinių. Kiekvienas kompleksas traktuojamas viena polimorfine rūšimi.

Gerai suvokti tokių kompleksų sandarą įmanoma tik studijuojant jų kilmę. Žinoma, kad poliploidija sukeliama arba somatinio, arba mejotinio procesų. Pirmu atveju ląstelės chromosomų skaičius padvigubėja dėl mitotinio chromosomų atsiskyrimo, neatsiskiriant ląstelei. Jei tai jauno gemalo ar meristemos dalis, ši ląstelė greitai gali išsivystyti į audinį, iš kurio vystysis augalas arba ūgliai, produkuojantys žiedus. Taip diploidinis augalas subrandina diploidines mikrosporas ir megasporas, vykstant premejotiniam sudvigubėjimui arba nevykstant redukcijai mejozėje. Atsiranda tetraploidinės ar triploidinės sėklos. Jeigu diploidiniai augalai, atsižvelgiant į šiuos du būdus, yra aiškios rūšys, kurių genomą galima užrašyti AA, tai iš jų kilę
tetraploidai bus AUTOPOLIPLODAI arba AUTOPLOIDAI, žymimi AAAA. Jei diploidinis augalas buvo dviejų augalų su nepanašiu genomu AB hibridas, tai kilęs tetraploidas bus ALOPOLIPLOIDAS arba ALOPLOIDAS, alotetraploidas AABB. Daugumoje du genomai nėra visiškai panašūs (HOMOLOGINIAI), nei visai nepanašūs (NEHOMOLOGINIAI), bet kažkur tarpiniai – HOMEOLOGINIAI, užrašomi AAA’A’. Kitaip tariant tai – dalinė homologija. Tokie atvejai vadinami SEGMENTINIAIS ALOPOLIPLOIDAIS. Jie laikomi tarpiniais tarp ekstremalių autopoliploidų ir alopoliploidų. Įmanoma atskirti ekstremalų alopoliploidą nuo diploido. Pavyzdžiui, rūšis 2n = 20 gali būti diploidas (x = 10) arba tetraploidas (x = 5). Jei ši rūšis turi giminingą rūšį 2n = 10, šioje situacijoje tikriausiai parodoma, kad rūšis AABB gali elgtis lyg būtų diploidas. Tokie ekstremalūs alopoliploidai vadinami AMFIDIPLOIDAIS. Tarpinėms rūšims gali būti būdingas heksaploidiškumas ar didesnis ploidiškumas.

Alopoliploidų atveju tėvinių diploidų genomai gali turėti tuos pačius bazinius skaičius (MONOBAZINĖ POLIPLOIDIJA) kaip, pavyzdžiui, Festuca, bet poliploidas gali apjungti skirtingų bazinių skaičių genomus (DIBAZINĖ POLIPLOIDIJA), pavyzdžiui, trys rūšys Spartina maritima 2n = 60, S. alterniflora 2n = 62 ir S. anglica 2n = 122. Tokie poliploidai turi naują bazinį skaičių; Spartina genties naujas bazinis skaičius x = 61 kilo iš tėvų, kurių bazinis skaičius x = 30 ir x = 31.

Dažnai poliploidinis kompleksas susideda iš aiškių diploidinių rūšių eilių.Šių rūšių hibridai būna įvairaus ploidiškumo: tetra-, heksa- ir daugiau poliploidai. Kadangi sunku atskirti genomų rekombinacijas tarp diploidinių taksonų, sunkiai atpažįstamas atskiras tetraploidinis taksonas.Tokia situacija aprašoma kaip POLIPLOIDINĖS KOLONOS KOMPLEKSAS. Pavyzdžiui, Dactylis glomerata ir Juncus bufonius kompleksai, atstovaujantys tetraploidus ir heksaploidus – oktoploidus. Abiem atvejais gali būti atskirtas diploidinių rūšių skaičius.

Poliploidijos tipas, minėtas iki šiol, vadinamas EUPLOIDIJA pagal K.Steisą. Kitas tipas – ANEUPLOIDIJA, kai pakinta pavienių chromosomų skaičius. Vicia chromosomų skaičius yra 2n = 10, 12, 14, 24 ir 28, susidedančių iš aneuploidų, susigrupavusių diploidų ir tetraploidų pagrindu. Crepis 2n = 6, 8, 10, 12, 14, 16, 18, 22, 24, 42, 44, 66, 88 būdingas mažesnis grupavimasis. Kai chromosomų skaičiai neturi aiškaus ryšio su skirtingo ploidiškumo eilėmis, galima naudoti terminą DISPLOIDIJA. Dabar žinoma daug mechanizmų, kai netenkama chromosomų arba jos įgyjamos. Jei chromosomų padaugėjimas poliploide įmanomas, tai jų netekimas diploide gali būti mirtinas. Vis tik poliploiduose jis gali būti toleruojamas dėl daugybės genomų buferinio efekto. Kita vertus, chromosomų skaičiaus redukcija diploide gali įvykti, netenkant nedaug chromosominės medžiagos dėl translokacijų. Diploidas su viena pridėtine chromosoma vadinamas TRISOMIKU, diploidas be vienos chromosomos – MONOSOMIKU, normalus diploidas – DISOMIKU.

Augalų chromosomų skaičius įvairus: yra 2n = 4 ( dviskiltis atstovas Haploppapus gracilis ) ir 2n = 1260 ( papartis Ophioglossum reticulatum ). Jeigu teisingai nustatytas Ophioglossum bazinis skaičius x = 15, tai O.reticulatum yra 84-ploidinė rūšis.

Tada, kai chromosomų skaičius dėl įvairių priežasčių pakito evoliucijoje, aišku, kad palyginimai vertingi tiktai žinomose, gana siaurai apibrėžtose ribose. Pyrola minor ir Homo sapiens – (2n = 46). Toks atsitiktinumas rodo, kad galima palyginti tik vienos genties rūšis.

Chromosomų skaičius – rūšies požymis, bet tai toli gražu ne viskas. Tikriausiai nėra priimtino šeimų dydžio, turinčio vieną chromosomų skaičių. Pinaceae šeimos beveik visų atstovų 2n = 24. Tuo požymiu artimos ir samanų šeimos. Išleista vertinga P.H.Reiveno (RAVEN) gaubtasėklių šeimų chromosomų skaičiaus apžvalga. Jo pagrindinė išvada ta, kad pagal kilmę gaubtasėklių bazinis skaičius x = 7. Palyginimai šeimos rangu vertingi tik tada, kai naudojamas bazinis skaičius, ne chromosomų. A.J.Kronkvisto gaubtasėklių klasifikacijoje visi poklasiai turi dominuojantį bazinį skaičių 7, išskyrus vieną poklasį Caryophyllidae, kur x = 9. Daugybė diploidų (2n) abejuose poklasiuose perša išvadą, kad, nepaisant plačiai paplitusios poliploidijos, dauguma gaubtasėklių evoliucijos linijų buvo diploidinės . Tas pats bazinis skaičius nėra tipiškas kitoms augalų grupėms: kerpsamanėms jis gali būti 5, 6, 9.

Šiuo metu Jūs matote 30% šio straipsnio.
Matomi 1385 žodžiai iš 4551 žodžių.
Peržiūrėkite iki 100 straipsnių per 24 val. Pasirinkite apmokėjimo būdą:
El. bankininkyste - 1,45 Eur.
Įveskite savo el. paštą (juo išsiųsime atrakinimo kodą) ir spauskite Tęsti.
SMS žinute - 2,90 Eur.
Siųskite sms numeriu 1337 su tekstu INFO MEDIA ir įveskite gautą atrakinimo kodą.
Turite atrakinimo kodą?
Po mokėjimo iškart gausite atrakinimo kodą, kurį įveskite į laukelį žemiau:
Kodas suteikia galimybę atrakinti iki 100 straispnių svetainėje ir galioja 24 val.