Mechaniniai svyravimai ir bangos
5 (100%) 1 vote

Mechaniniai svyravimai ir bangos

TURINYS

Mechaniniai svyravimai …………………………………………………………………………………………………………..3

Laisvieji svyravimai ……………………………………………………………………………………………………………….4

Slopinamieji svyravimai ………………………………………………………………………………………………………….5

Priverstiniai svyravimai …………………………………………………………………………………………………………..5

Rezonansas …………………………………………………………………………………………………………………………….6

Autosvyravimai ………………………………………………………………………………………………………………………6

Harmoniniai svyravimai …………………………………………………………………………………………………………..7

Matematinė svyruoklė ……………………………………………………………………………………………………………..7

Lygtys, aprašančios mechaninius svyravimus …………………………………………………………………………….8

Mechaninės bangos …………………………………………………………………………………………………………………9

Skersinės ir išilginės mechaninės bangos ………………………………………………………………………………….10

Koherentines bangos . Bangų interferencija ………………………………………………………………………………11

Hiuigenso principas . Bangų atspindžio dėsnis . Bangų difrakcija ………………………………………………..12

Garso bangos …………………………………………………………………………………………………………………………13

Infragarsas . Ultragarsas ………………………………………………………………………………………………………….13

Tono aukštis ………………………………………………………………………………………………………………………….14

Akustinis rezonansas ………………………………………………………………………………………………………………15

Visi gerai pažįstame savotiškus judesius , kurie vadinami virpesiais arba svyravimais . Mus supančiame pasaulyje jie paplitę . Svyruoja medžių šakos vėjyje , vienu galu įtvirtinta metalinė plokštelė , nuo vertikalės nukreiptos sūpuoklės , judantys ant lingių vagonai ir t. t. Svyruoja , pavyzdžiui , prie svyruoklės prikabintas kūnas , kai jį pastumiame vertikalia kryptimi . Toks kūnas svyruoja ir pastumtas horizontaliai . Stumtelėję pasvarą ir po to jį paleidę , matysime , kad jis juda aukštyn ir žemyn arba kairėn ir dešinėn . Tai ir yra svyravimas . Svyravimu vadinamas toks judėjimas , kai kūnas pakaitomis nukrypsta tai į vieną , tai į kitą pusę . Pagrindinė tokio judėjimo savybė yra jo periodiškumas . Judėjimo periodiškumas reiškia , kad po tam tikro laiko tarpo , kuris vadinamas svyravimo periodu , kūno padėtis , t. y. jo koordinatė , tiksliai arba apytiksliai pasikartoja .Periodinis judėjimas – tai bet koks vienodais laiko tarpais pasikartojantis judėjimas . Jo pavyzdžiai gali būti judėjimas apskritimu , svyruoklės svyravimas , molekulių virpesiai .

Svyravimas – periodinis judėjimas tarp dviejų kraštinių padėčių , pvz., spyruoklės judėjimas aukštyn ir žemyn . Svyruojančių sistemų kinetinė ir potencinė energija nuolat kinta . Jei nėra slopinimo , pilnutinė sistemos energija ( kinetinės ir potencinės energijos suma ) išlieka pastovi .

Mechaniniu svyravimu vadinamas periodiškai pasikartojantis materialiojo taško ( ar kūno ) judėjimas ta pačia trajektorija pakaitomis į priešingas puses pusiausvyros padėties atžvilgiu ( judėjimas , kuris tiksliai arba apytiksliai pasikartoja per vienodus laiko tarpus ) .

Visiems šiems judesiams būdingi bendri dėsningumai , kurie išreiškiami analogiškomis lygtimis ir išvadomis .

Mechaninio svyravimo pavyzdžiai :

1) ant spyruoklės pakabinto pasvaro judėjimas , kai jis išvedamas iš pusiausvyros padėties ( spyruoklinė svyruoklė ) ;

2) ant ilgo , nesvaraus ir netąsaus siūlo pakabinto rutuliuko svyravimas vertikalioje plokštumoje , veikiant sunkio jėgai ( matematinė svyruoklė ) ;

3) skambančios stygos virpėjimas ;

4) membranos virpėjimas .

Pagrindinės sąlygos , kad vyktų svyravimai , yra šios :

1) kad kūnas pradėtų svyruoti , jo pradinė energija turi būti didesnė už energiją pusiausvyros padėtyje , t.y. kūną reikia išvesti iš pusiausvyros padėties ;

2) išvedus kūną iš pusiausvyros padėties , sistemoje turi atsirasti jėga , grąžinanti jį į pusiausvyros padėtį ( veikianti pusiausvyros padėties kryptimi ) ;

3) kad kūnas svyruotų ilgą laiką , svyravimo energija neturi mažėti .

Svyravimo metu dydžiai kinta į vieną ir į kitą pusę nuo tam tikrų vidurinių reikšmių , tačiau per daug nuo jų nenutolsta . Todėl , norint apibūdinti svyravimą ,
reikia pasirinkti skaičius , atitinkančius ne vieną momentą , o visą procesą . Svyravimui būdingas dydžių kitimas dviem priešingomis kryptimis . Todėl , pavyzdžiui , palydovo sukimosi apie planetą negalima laikyti svyravimu , nes jis juda viena kryptimi . Tačiau stebėtojas , esantis orbitos plokštumoje , matys ne sukimąsi , o palydovo poslinkį tai vienon , tai kiton pusėn , t. y. svyravimą . Apskritai bet kurio uždara kreive besisukančio taško projekcija tiesėje svyruoja .

Pagal kūną veikiančią jėgą svyravimas yra : laisvasis ( arba savasis ) , priverstinis , harmoninis , slopinamasis , autosvyravimas .

Svyravimas esti periodinis ir neperiodinis. Periodinio svyravimo sąlyga : f (t) = f (t+ n T ) , n = 1, 2, 3, …

Pagrindiniai periodinio svyravimo parametrai :

Svyravimo periodas T – trumpiausias laikas , per kurį kūnas atsiduria toje pačioje padėtyje t. y. atlieka vieną svyravimų ciklą . Jis yra išreiškiamas sekundėmis ;

Svyravimo dažnis v – tai svyravimų skaičius per laiko vienetą ( sekundę ). Dažnio matavimo vienetu



laikomas dažnis tokių svyravimų , kurių metu per 1 s kūnas susvyruoja vieną kartą . Šis matavimo

vienetas vadinamas hercu ( Hz ) . 1 Hz = 1 s-1 . Ryšys tarp svyravimo periodo T ir dažnio v labai paprastas : dažnis yra atvirkštinis periodui dydis , periodas – atvirkštinis dažniui dydis :

Svyravimo amplitudė – svyruojančios dalelės didžiausias nuokrypis nuo pusiausvyros padėties . Amplitudė žymima A arba xm .

Svyravimo fazė φ – tai dydis , apibūdinantis kūno padėtį ir judėjimo kryptį tam tikru laiko momentu . Svyravimų fazė φ0 pradiniu laiko momentu t = 0 vadinama pradine faze .

Koordinatė – ji parodo , kur yra svyruojanti sistema tam tikru laiko momentu .

Kampinis dažnis ω – svyravimų skaičius per 2π sekundžių :



Laisvieji ( savieji ) svyravimai

Prie svyruoklės pritvirtintas arba ant siūlo pakabintas pasvaras svyruoja tartum savaime . Pakanka tik išjudinti pasvarą iš pusiausvyros padėties – truputį patraukti spyruoklinės svyruoklės pasvarą į šalį arba šiek tiek nukreipti nuo vertikaliosios padėties matematinę svyruoklę . Čia žodis „ savaime “ reiškia , kad svyruoti pasvarų neverčia jokios išorinės jėgos ; jie svyruoja veikiami tik vidinių , pačioje kūnų sistemoje slypinčių jėgų : tamprumo jėgos bei siūlo tamprumo jėgos matematinėje svyruoklėje ( siūlinės svyruoklės kūnu sistemai priklauso ir Žemė , nes ji yra pasvarą veikiančios sunkio jėgos „šaltinis“ ) .Galinčių laisvai svyruoti kūnų sistema vadinama svyravimų sistema .

Laisvųjų svyravimų dažnis vadinamas ir sistemos savųjų svyravimų dažniu .

Svyravimai , kuriuos sukelia kūnus veikiančios vidinės jėgos ( kurie vyksta savaime ) , vadinami laisvaisiais arba savaisiais .

Matematinės svyruoklės ir svyruoklinės spyruoklės svyravimai yra laisvieji . Ir ne tik jie . Tokie svyravimai paplitę gamtoje .Sąlygos , kuriomis atsiranda laisvieji svyravimai :

1) kūną veikiančios jėgos arba nors viena jų turi priklausyti nuo koordinačių . Vienoje tam tikroje padėtyje , vadinamojoje pusiausvyros padėtimi , esantį kūną veikiančių jėgų atstojamoji turi būti lygi nuliui . Išvestą iš

Laisvieji rutuliuko ir pasvaro , prikabinto ant spyruoklės svyravimai .

A – svyravimų amplitudė .

2) pusiausvyros padėties kūną veikiančių jėgų atstojamoji turi būti nelygi nuliui ir nukreipta į pusiausvyros padėtį ;

3) sistemos trinties jėgos turi būti pakankamai mažos .

4) svyravimų sistemoje turi veikti viena į kitą panašios jėgos . Spyruoklinėje svyruoklėje – tamprumo jėga , kurios projekcija koordinačių ašyje proporcinga spyruoklės deformacijai , t. y. kūno poslinkiui . Ši jėga nukreipta į pusiausvyros padėtį . Siūlinėje svyruoklėje – sunkio jėgos ir tamprumo jėgos atstojamoji , kurios projekcija irgi proporcinga kūno poslinkiui

toji jėga taip pat nukreipta į pusiausvyros padėtį .

5) trintis sistemoje turi būti ganėtinai maža , kitaip svyravimai bus greitai nuslopinti arba jų visai neatsiras .

Pastumdami nejudančią svyruoklę arba pakeldami į tam tikrą aukštį , suteikiame jai energijos : pirmuoju

atveju – kinetinės , antruoju – potencinės . Po to svyruojančio kūno kinetinė energija pakaitomis virsta potencine , ir atvirkščiai . Kai nėra trinties , pilnutinė mechaninė svyruoklės energija visą laiką lygi tai energijai , kuri jai suteikta pradžioje .

Pilnutinė svyruojančio kūno energija proporcinga svyravimo amplitudės kvadratui . Vadinasi , kai nėra trinties , pilnutinė mechaninė spyruoklės energija būna pastovi , taigi nesikeičia ir svyravimo amplitudė . Vadinasi , laisvieji svyravimai turi tęstis amžinai . Iš tikrųjų retkarčiais galima stebėti svyravimus , kurie trunka nepaprastai ilgai . Pavyzdžiui , ilga spyruoklė , patraukta į šalį nedideliu kampu , gali svyruoti daugelį valandų . Vis dėl to laisvieji svyravimai neamžini . Kad ir kaip ilgai tęstųsi laisvieji svyravimai , jų amplitudė , kaip rodo patirtis , iš lėto mažėja , svyravimai , kaip sakoma , slopsta ir galų gale baigiasi .

Svyravimų slopimo priežastis ta , kad
realiomis Žemės sąlygomis svyravimus , kaip ir visus kitus judesius , veikia trinties jėga . Ji nukreipta į priešingą judėjimui pusę , todėl atlieka neigiamą darbą . O kai darbas neigiamas , pilnutinė energija mažėja . Kartu mažėja ir amplitudė . Svyravimai , kurių amplitudė , laikui bėgant , mažėja vadinami slopinamaisiais svyravimais . Po kiekvieno naujo periodo amplitudė tampa vis mažesnė , ir juo didesnė trinties jėga , juo sparčiau amplitudė mažėja .

Slopinamųjų svyravimų negalima laikyti harmoniniais , nes harmoninių svyravimų amplitudė pastovi .

Priverstiniai svyravimai

Kad svyravimai nesloptų , kiekvieną svyravimo periodą reikia kompensuoti energijos nuostolius dėl trinties . Kompensuojant svyravimų sistemos energijos nuostolius gali išorinė periodiškai kintanti jėga . Atlikdama darbą , ji papildo sistemos energiją . Šiuo atveju kūnų svyravimai jau ne laisvieji , o priverstiniai ; jėga , sukelianti tuos svyravimus , vadinama priverstine jėga .

Priverstinio svyravimo pavyzdys yra toks svyravimas : pasvaras sujungtas su spyruoklėmis . Vienos jų galą veikia periodiškai kintanti jėga . Kad nenusvirtų , pasvaras pritvirtinamas prie skridinio , riedančio kartele . Jėga periodiškai veikia pririšus spyruoklės galą prie strypo , įtvirtinto išcentrinės mašinos diske .

Sukant diską , siūlas veikia spyruoklės galą tam tikra jėga , kuri kinta disko sukimosi dažniu v . Todėl ir pasvaras ima svyruoti tuo dažniu , o ne savųjų svyravimų dažniu . Priverstinė jėga „ primeta “ svyruojančiam kūnui savąjį dažnį .

Priverstiniai svyravimai vyksta priverstinės jėgos dažniu .

Priverstinio svyravimo amplitudė priklauso ne tik nuo priverstinės jėgos amplitudės F0 , bet ir nuo jos kitimo kampinio dažnio ω . Kuo mažesnis slopinimas , tuo didesnė amplitudė .

Rezonansas

Sistemos priverstinio svyravimo amplitudės padidėjimas iki didžiausios vertės , kai ω ≈ ω0 , vadinamas rezonansu . Tuomet sistema gauna daugiausia energijos . Rezonanso dažnis tuo mažesnis už sistemos savojo svyravimo kampinį dažnį , kuo didesnis slopinimas :

Ryškus kūno priverstinių svyravimų amplitudės padidėjimas , kai sistemą veikiančios jėgos kitimo dažnis sutampa su kūno laisvųjų svyravimų dažniu , vadinamas rezonansu .

Rezonanso metu išorinė jėga veikia į taktą su laisvaisiais svyravimais .

Kuo mažesnė trintis sistemoje , tuo didesnė svyravimų amplitudė :čia Fm – išorinės jėgos amplitudė , μ – trinties koeficientas .

Kai išorinės jėgos kitimo dažnis ω sutampa su savuoju sistemos svyravimų dažniu ω0 , jėga per visą periodą veikia svyruojančio kūno greičio vektoriaus kryptimi , todėl atlieka teigiamą darbą , padidindama sistemos svyravimų amplitudę . Kai dažnis kitoks , per vieną periodo dalį išorinė jėga atlieka teigiamą darbą , padidindama sistemos energiją , per kitą – neigiamą darbą , sumažindama svyravimų sistemos energijos atsargą .

Kai pasiekiamas rezonansas , išorinė jėga , veikianti svyravimų sistemą , per visą periodą atlieka didžiausią teigiamą darbą . Todėl rezonanso atsiradimo sąlyga galima laikyti didžiausio energijos kiekio perdavimą svyravimų sistemai .

Kai nėra trinties , priverstinių svyravimų rezonansinė amplitudė laikui bėgant turi didėti neribotai . Paprastai sistemos svyravimų amplitudę , nusistovėjus rezonansui , apibūdina per visą periodą prarastos energijos ir per tą patį laiką išorinės jėgos atlikto darbo lygybė . Juo mažesnė trintis , juo didesnė rezonansinė amplitudė .

Rezonansas gali būti ir naudingas , ir žalingas . Naudingas tada , kad kai reikia jis padidina svyravimo amplitudę . Rezonanso reiškinys taikomas mechanikoje , radiotechnikoje , akustikoje , optikoje ir kitur .

Rezonansas yra žalingas tada , kai , pavyzdžiui , ant pamato stovi veikianti mašina , kurios tam tikros dalys periodiškai juda . Tie judesiai persiduoda pamatui , ir šis priverstinai svyruoja . Pamatas taip pat svyruoja savuoju dažniu . Ir kai jis sutampa su mašinos dalių svyravimų dažniu , pamato svyravimų amplitudė gali tiek padidėti , kad pamatas neatlaikys . Žinomi atvejai , kai sugriuvo tiltai , žygiuojant per juos kariniams daliniams , nes savasis tilto svyravimų dažnis sutapo su kareivių žingsnio dažniu . Dėl to kariniams daliniams per tiltus draudžiama žygiuoti koja kojon .

Siekiant išvengti pavojingų rezonanso padarinių , iš anksto apskaičiuojami mašinų , pamatų , transporto priemonių svyravimų dažniai , kad įprastinėmis jų eksploatacijos sąlygomis rezonansas nepasireikštų .

Rezonansas gali būti mašinų , pastatų , tiltų bei kitokių įrenginių suirimo priežastis , jeigu jų savasis svyravimų dažnis sutampa su periodiškai veikiančios jėgos dažniu . Todėl automobilių varikliai įrengiami ant specialių amortizatorių .

Dažnai rezonansą stebime kasdieniniame gyvenime . Pravažiuojant gatve pakrautam sunkvežimiui , subarba kambario langų stiklai . Vadinasi , savasis stiklų svyravimų dažnis lygus mašinos svyravimų dažniui . Apskritai kiekvienas barškesys dažniausiai susijęs su rezonansu .

Autosvyravimai

Autosvyravimais vadinami neslopinamieji svyravimai , galintys egzistuoti sistemoje , kurios neveikia jokios
periodinės išorinės jėgos .

Bet kuri autosvyravimų sistema turi energijos šaltinį , kuris reguliuoja energijos tiekimą svyruojančiam kūnui ir kompensuoja trinties sukeltus energijos nuostolius .

Kitaip negu priverstinių svyravimų , autosvyravimų dažnį ir amplitudę lemia svyravimų sistemos savybės . Nuo laisvųjų svyravimų autosvyravimai skiriasi tuo , kad jų amplitudė nepriklauso nuo laiko ir nuo pirminio trumpalaikio poveikio , sukėlusio svyravimus .

Autosvyravimų sistema paprastai sudaryta iš trijų pagrindinių elementų :

1) svyravimų sistemos ;

2) energijos šaltinio ;

3) įrenginio su grįžtamuoju ryšiu , reguliuojančio energijos tiekimą svyravimų sistemai . Energija , gaunama iš šaltinio per vieną periodą , lygi energijai , kurios svyravimų sistema netenka per tą patį laiką .

Šiuo metu Jūs matote 30% šio straipsnio.
Matomi 2098 žodžiai iš 6968 žodžių.
Peržiūrėkite iki 100 straipsnių per 24 val. Pasirinkite apmokėjimo būdą:
El. bankininkyste - 1,45 Eur.
Įveskite savo el. paštą (juo išsiųsime atrakinimo kodą) ir spauskite Tęsti.
SMS žinute - 2,90 Eur.
Siųskite sms numeriu 1337 su tekstu INFO MEDIA ir įveskite gautą atrakinimo kodą.
Turite atrakinimo kodą?
Po mokėjimo iškart gausite atrakinimo kodą, kurį įveskite į laukelį žemiau:
Kodas suteikia galimybę atrakinti iki 100 straispnių svetainėje ir galioja 24 val.